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ABSTRACT

With the progress of Mars exploration, numerous Mars image
data are collected and need to be analyzed. However, because
of the imbalance and distortion in Mars data, the performance
of existing classification models is unsatisfactory. In this pa-
per, we design a new framework based on semi-supervised
contrastive learning for Mars rover image classification. The
redundancy of Mars data can disable the effectiveness of con-
trastive learning. To strip out problematic learning samples,
we propose to ignore inner-class pairs on labeled data as well
as neglect negative pairs on unlabeled data. Experimental re-
sults show that our learning strategies can improve the classi-
fication model by a large margin and outperform state-of-the-
art methods.

Index Terms— Mars image, classification, representation
learning, semi-supervised learning, unsupervised learning

1. INTRODUCTION

Extraterrestrial exploration is the forever frontier topic for hu-
man science research. In resent years, machine learning has
shown its great power for planetary science, such as capturing
the first black hole image [1]. With more space missions in
the next ten years, machine learning will play a more impor-
tant role in planetary science.

Mars Science Laboratory (MSL) rovers have been send-
ing an enormous amount of data to earth. Organizing these
massive images by content costs scientists a lot of time, which
can be saved by autonomous classifiers. Convolutional Neu-
ral Networks (CNNs) have achieved great success in many
image classification tasks [2, 3]. However, for Mars rover
data, the performance of existing CNNs is unsatisfactory.

Generally, Mars rover data poses two challenges for clas-
sification: 1) Train-test gap. In extraterrestrial exploration,
only past and current data can be used for training (and vali-
dation), while future data is the testing target. However, since
MSL rovers do not collect images with equal frequency by
every instrument on every sol, the data in training and testing
varies. As shown in Figure 1, the gap between training and

* Corresponding author.
This work was supported by the National Key Research and Develop-
ment Program of China under Grant No. 2018AAA0102702.

978-1-6654-4115-5/21/$31.00 ©2021 IEEE

499

Training/Validation Set Testing Set

(a) Category percentage difference

Drt side

Inlet

Training/Validation Set Testing Set

(b) Examples of object appearance difference

Fig. 1. The train-test difference on category distribution and
object appearance in MSL rover data.
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Fig. 2. Examples of low-quality images in MSL rover data.
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testing sets lies in not only the uneven distribution of cate-
gories, but also the various appearance of the target objects.
2) Low image quality: Because of the signal loss in Mars-
to-Earth transmission or camera errors, the visual quality of
some images may be damaged. As shown in Figure 2, images
suffer from many kinds of distortion, including but not limited
to low resolution, over-exposure, and color channel error.

For the problem of train-test gap, there has been a lot of
research on data imbalance [4, 5, 6, 7] and classification gen-
eralization [8, 9, 10]. However, since the gap between training
and testing on MSL rover data is too challenging and com-
plex, these approaches are unsatisfactory.

Image visual quality usually can be improved by enhance-
ment methods, such as SRCNN [11] for super-resolution.
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However, the image quality distortion on MSL rover data is
a combination of multiple distortions, therefore too complex
for existing enhancement methods to handle.

Different from existing methods, we propose to solve the
problem by representation learning. By developing robust vi-
sual representation, the problems of train-test gap and low
image quality can be solved all at once. Contrastive learn-
ing [12, 13] is a powerful self-supervised learning approach.
In this paper, we extend it to help with the task of MSL rover
image classification. The challenge in performing contrastive
learning with MSL rover data is that, there is a severe infor-
mation overlap between different MSL data samples, which
can negate the effect of contrastive learning. To resolve this
contradiction, we modify contrastive learning in two ways: on
labeled data, we make use of annotations and propose to ig-
nore inner-class pairs; on unlabeled data, we only maximize
the similarity of positive pairs and do not consider the dissim-
ilarity of negative pairs. Experimental results show that our
semi-supervised classification framework outperforms exist-
ing methods by a large margin.

2. RELATED WORKS

2.1. Machine Learning for Planetary Science

Machine learning has been used for many planetary science
tasks, such as exoplanet detection [14], comparative planetol-
ogy and exoplanet biosignatures [15]. Readers may refer to
[16] for a more comprehensive review and outlook.

For Mars exploration, Othrock et al. [17] and Wagstaff
et al. [18] provide analysis for space and ground images.
Wagstaff et al. [18] create a dataset of the Mars surface en-
vironment and train AlexNet [19] for content classification.
However, the classification performance is unsatisfactory. In
this paper, we have a deeper analysis of MSL rover data and
design a more powerful classification framework.

2.2. Improving Classification Performance

Many techniques have been designed for improving classifi-
cation performance. Several works [8, 9] propose loss de-
signs to balance positive and negative samples. Classification
problems often suffer from data imbalance across classes. To
solve data imbalance, re-sampling [4] and re-weighting [6, 7]
based methods are proposed. However, all these methods
have limited effectiveness on MSL rover data. In this paper,
we propose a more effective representation learning strategy
and achieve superior performance.

3. SEMI-SUPERVISED MARS IMAGERY
CLASSIFICATION

To solve the problems of MSL rover data, we extend con-
trastive learning into supervised inter-class and unsupervised
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similarity versions. Our framework is shown in Figure 3.
In this section, we will first introduce the proposed learning
strategies, then show our full framework architecture.

3.1. Supervised Inter-Class Contrastive Learning

Motivation. We first review the principle of contrastive
learning. To learn feature representations, contrastive learn-
ing maximizes the agreement between different views of the
same sample (positive pairs), and conversely minimizes the
agreement between different samples (negative pairs). Given
a sample z; from the dataset X, contrastive learning first gen-
erates two views dy(x;) and do(x;), where d;(-) and da(-)
are separate random data augmentation operators of the same
augmentation family d. Denote F' as the feature encoder
and z] = F(d;(z;)) as the extracted feature representation of
d;(x;), contrastive loss is:

1,2

4,2)/7)
L/

;5 %5
where 7 = 0.2 is a temperature hyper-parameter, and sim(u, v)
= uTv/|u| |v| measures the similarity of two normalized vec-
tors by dot production.

Contrastive learning is usually for self-supervised learn-
ing, i.e. training models from scratch by contrastive loss. But
in this paper, we propose to use it in a semi-supervised way,
i.e. training models with both supervised classification loss
and contrastive loss. Taking advantage of the great power of
contrastive learning, we enrich the visual representation and
improve the robustness of the classification model, so that
the problems of data imbalance and low image quality can
be solved once and for all.

The essence of contrastive learning is maximizing the dis-
tance between different samples in the latent space. In ordi-
nary large-scale classification datasets such as ImageNet [20],
the difference between samples is usually big enough. How-
ever, Mars data is of less diversity: there is a significant infor-
mation overlap between different samples. Rovers may take
photos of the same scene multiple times, such as to check
the status of equipment each day. Also, compared with the
scenes on earth, Mars scenes are more monotonous. Because
of the severe information overlap between different samples,
contrastive learning turns out to be ineffective on mars data.

exp(sim(

L=-1
8% i exp(sim(

(D

Combining Supervision. To resolve the contradiction be-
tween contrastive learning and MSL rover data, we introduce
human supervision into contrastive learning. Using the classi-
fication annotations, we minimize the distance between sam-
ples only for samples belonging to the same class, and maxi-
mize the distance between samples only for samples belong-
ing to different classes. In other words, we turn the originally
unsupervised sample-wise contrastive learning into a super-
vised inter-class version. Denote x., as a sample of class c¢;,
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Fig. 3. The framework of our semi-supervised Mars image classification, which contains three streams: classification, super-

vised inter-class contrastive learning, and unsupervised similarity learning.

and x.; as a sample of class c;, our supervised inter-class
contrastive loss is:

exp(sim(z,, 22,)/7)
ch;éci exp(Sim(chi ’ Zgj )/T) '

Ls = —log @

Intuitively, the proposed £, minimizes the distance be-
tween samples of the same class, and maximizes the distance
between samples of different classes, which is similar to
triplet loss [8] or center loss [10]. However, triplet loss and
center loss do not enrich the feature representation, therefore
have limited effectiveness as we will show in the experi-
ments. In comparison, our supervised inter-class contrastive
learning not only clusters the feature by categories, but also
improves the feature representation, therefore better assists
the classification task.

As shown in Figure 3, the data augmentation we use can
be divided into two types: shape and pixel. Shape augmenta-
tion contains flip, random crop and resize, and rotation, which
can help the model understand the object structure, and teach
the model to recognize the same object under different angles
and magnifications. Pixel augmentation contains Gaussian
blur, color jittering, and desaturation, which can improve the
model’s robustness to image distortion and low visual quality.

3.2. Unsupervised Similarity Learning

Data annotation requires a large amount of human and finan-
cial resources. For Mars data, annotation is especially expen-
sive. Recognizing the construction of the rovers, checking the
status of the devices, and identifying Mars terrains all require
expert knowledge. The lack of annotation limits the effective-
ness of the proposed supervised inter-class contrastive loss.
To further promote the performance, we propose to use cheap
and easily available unlabeled data.

The aforementioned information overlap also exists in un-
labeled data. What’s worse, this time we have no human
supervision to seek help from. To solve this dilemma, we
propose to abandon negative pairs and only consider positive
pairs. We call it similarity learning, since the model neglects

the dissimilarity between samples. Denote x, as a sample
from unlabeled data, our unsupervised similarity loss is:
L= —sim(z,, 2). 3)
Discussion. Why £,, does not cause collapse is an interesting
question. In experiments, we find that training with £,, alone
does lead to collapse. But when we train together with £, the
collapse is prevented. This may be because our supervised
inter-class contrastive learning restricts the feature represen-

tation to a good sub-space, which counteracts the bad impacts
of unsupervised similarly learning.

3.3. Full Model

Our classification objective L5 is the widely-used cross-
entropy loss. Finally, our full objective is:

L= Lcls + )\sﬁs + )\uﬁuv (4)

where A\ = 1 and A\, = 0.2 control the balance of different
training objectives.

In Figure 3, our backbone B is ResNet-50 [21]. For L
and £,,, we add 2-layer Multi-Layer Perceptron (MLP) heads
H, and H, to project the representation into 128 dimensions.

4. EXPERIMENTS

4.1. Implementation Details

For model training and evaluation, we use the MSL Surface
Dataset [18]. Wagstaff et al. [18] collect 6691 images by three
instruments of the Curiosity rover. 24 categories are defined
by a Mars rover mission scientist. Training and evaluation are
split by day on Mars. Data on sol 3-564 is for training and
validation, while sol 565-1060 is for testing. Different from
[18], we reshuffle the training and validation sets. Our test-
ing set remains the same as [18]. For unsupervised similarity
learning, we additionally collect 34k unlabeled images from
NASA'’s Planetary Data System (PDS).
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Table 1. Results for MSL rover image classification.

Table 2. Ablation studies of our designs.

Category Method Top-1 (%) Method Top-1 (%)
Baseline AlexNet [19] in [18] 66.70 ResNet-50 (baseline) 79.28 +1.76
ResNet-50 [21] 7928+ 1.76 MoCo V2 pre-training 81.56 + 1.36
Triplet loss [8] 84.87 £ 1.13 MoCo V2 pre-training + Strong Aug. 76.63 + 3.06
Loss design Center loss [10] 82.91 £ 0.93 MoCo V2 pre-training + Eq.(1) 75.66 £ 1.13
Focal loss [9] 82.86 + 0.74 MoCo V2 pre-training + L 93.82 + 1.57
Semi- Pseudo labeling [22]  78.64 + 0.04 MoCo V2 pre-training + L. 7865+ 1.53
supervised S4L [23], rotation 75.19 £1.73 Final (MoCo V2 pre-training + L + £,,) 95.86 + 1.63
learning S4L [23], jigsaw 81.81 +£2.33
Re-samplin Decoupling [4], cRT 80.94 + 1.43 . . . .
ping . ou pling [4], LWS 81.30 + 0.62 clines the clasmﬁcatlon accuracy. Tl.us may be becagse most
unlabeled data is about Martian soil and rock, which does
Re-weighting Class-balanced loss [6]  80.02 £ 0.89 not contain much semantic information. Therefore, unlabeled
LDAM-DRW [7] 82.12+1.92 data is ambiguous for the jigsaw and rotation pretext tasks.
Ours 95.86 1 1.63 We also compared with three state-of-the-art techniques

The mini-batch size is 16 for £.;s and £,,, and 24 for L,
which equals the number of categories. Our model is first pre-
trained on ImageNet [20] by MoCo V2 [13], then fine-tuned
on Mars data. The initial learning rate is le-3 for H,;s and le-
6 for B, H; and H,,. The optimizer is Adam [24]. We train
for 30 epochs, with learning rate multiplied by 0.1 at 20 and
25 epochs, taking ~1 hour with Nvidia GeForce RTX 2080Ti.

4.2. Comparison Results

Our model is compared with ten methods. For reliability, we
run each experiment three times and report the mean and stan-
dard deviation. Results are shown in Table 1.

We first compare with the model in [18]. The reported
performance is only 66.70%, which may be due to the lim-
ited capability of AlexNet [19]. When we change the base-
line to ResNet-50 [21], the performance improves to 79.28%,
demonstrating the necessity of using good feature extractors.

Next, we try to further promote the performance of
ResNet-50 by three widely-used losses: Triplet loss [8],
Center loss [10], and Focal loss [9]. Although these loss de-
signs can improve the classification performance by 3~6%,
their effectiveness is as not good as ours.

Since we introduce unlabeled data in our framework,
we also test two semi-supervised learning methods. Pseudo
learning [22] generates pseudo labels on unlabeled data.
With pseudo learning, the performance degrades, which may
be because the unlabeled data we crawled from PDS is uncu-
rated. Compared with the MSL Surface Dataset, the collected
unlabeled data is even more long-tailed and unbalanced.
Therefore, the pseudo labels on unlabeled data can be wrong
and mislead the classification model. S4L [23] applies self-
supervised learning on unlabeled data. The jigsaw pretext
task can improve the performance a little, while rotation de-
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for imbalanced data. Decoupling [4] is based on re-sampling.
Class-balanced loss [6] and LDAM-DRW [7] are based on
re-weighting. Although these techniques can improve the per-
formance compared with the ResNet-50 baseline, their effec-
tiveness is limited compared with our strategies.

Our Top-1 accuracy is 95.86%, higher than the second-
best methods Triplet loss by a large margin of 10.99%. With
our training strategies, the model learns better visual repre-
sentation, thus has better generalization and robustness.

4.3. Ablation Studies

The demonstration of our designs is shown in Table 2. Thanks
to the good feature learned by MoCo V2 [13] pre-training, the
accuracy increases by 2.28%. The data augmentation we use
in contrastive learning is stronger than normal data augmen-
tations used for classification. If we directly apply our strong
augmentation to classification, the performance degrades by
4.93%, which is because the supervision of classification is
too weak to learn against strong augmentation.

Supervised inter-class contrastive learning £¢ has a re-
markable effect. If we use the original contrastive learning,
i.e. Eq.(1), the accuracy declines, supporting our motivation
of introducing inter-class supervision. Unsupervised similar-
ity learning £,, alone degrades the performance, which is in
line with our analysis in Section 3. Finally, our full model
achieves the best performance, demonstrating the effective-
ness of our semi-supervised learning framework.

5. CONCLUSION

In this paper, we propose a semi-supervised learning frame-
work for MSL rover image classification. We extend con-
trastive learning into supervised inter-class and unsupervised
similarity-only versions. Experimental results demonstrate
the superiority of our designs.
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